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Abstract
We use both high- and low-temperature series expansions to investigate the
phase diagram of a ferrimagnetic mixed-spin S = (1/2, 1) Ising model on
the square lattice, including an on-site anisotropy term on the S = 1 sites.
Evidence is found for a first-order transition for large negative anisotropy, and
hence for the existence of a tricritical point. The model, with nearest neighbour
interactions only, does not appear to have a ferrimagnetic compensation point.

1. Introduction

Mixed-spin Ising models have been studied for some time as simple models of ferrimagnetism,
and there has been renewed interest recently in connection with compensation points. These
are temperatures, below the critical point, where the sublattice magnetizations exactly cancel,
with zero total moment. As the temperature is tuned through such a point the total moment
changes sign. In this context Ising models have the virtue of being exactly solvable in special
cases [1] or solvable to high numerical precision by Monte Carlo [2, 3] or other methods.

The present paper uses high- and low-temperature series expansions to study a particular
mixed-spin model. A bipartite square lattice has S = 1

2 spins on one sublattice (denoted A)
and S = 1 spins on the other (denoted B), with nearest neighbour interactions and a single-ion
anisotropy term on the S = 1 sites. The Hamiltonian of our model is

H = −J
∑

〈i j〉
σi S j − h A

∑

i∈A

σi − hB

∑

j∈B

S j − D
∑

j∈B

S2
j (1)

where σi = ±1, Sj = 1, 0,−1, h A and hB are fields on the two species and D is the anisotropy.
Note that we choose σi = ±1 rather than ± 1

2 as done by some other authors, This simply
amounts to a rescaling of the exchange constant J . Note also that we have written H in the
form of a ferromagnet (J > 0) but this is equivalent to a ferrimagnet by a simple spin reversal
on either sublattice.

The model, and a schematic phase diagram, are shown in figure 1. For D/J > −4
there will be a transition line separating the low-temperature ferromagnetic phase from the
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Figure 1. The ferrimagnetic model: (a) lattice showing the A sites as • and the B sites as ◦.
(b) Schematic of phase diagram with illustration of ground states. For D/J < −4, the B spins are
in the ‘zero’ state (◦) and the A spins are completely decoupled (•), and thus disordered even at
T = 0.

high-temperature disordered phase. At D/J = −4 the ferromagnetic and S = 0 states will
have equal energy and for all D/J < −4 the ground state is infinitely degenerate. A mean-
field treatment [4] predicts a tricritical point at D/J = −3.720, and thus a first-order transition
in the range −4 < D/J < −3.720. The mean-field solution also has a compensation point
for cases with −4 < D/J � −2 ln 6 (−3.3535 . . .). However, neither of these features was
observed in a recent study [2] based on Monte Carlo and numerical transfer matrix calculations.

The mixed-spin model has also been studied previously by high-temperature [5] and low-
temperature series [6] but not in the context of ferrimagnetism and compensation points, nor
with the inclusion of a single-ion anisotropy term. In the present work we extend these series
substantially and search for evidence of tricritical and/or compensation points.

2. Series expansions

In this section we describe the series derivation and present some of the raw data. The
procedures are standard and described in both overview reference works [7, 8] and specific
articles [9–12] and so we will omit much of the detail.

2.1. High-temperature expansions

Expansions have been derived for the zero-field free energy, f , and susceptibility, χ , in powers
of K = β J to order K 16 with β = 1/kBT . The expansions can be written in the form

−β f (H, βD) = 1

N
ln Z = 1

2
ln

(
2

1 − p

)
+

∞∑

r=2

Ar (p)K r (2)

and

χ =
∞∑

r=0

Gg(p)K r (3)

where

p = 2eβD/(1 + 2eβD) (4)
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and Ar (p) and Gr (p) are polynomials in p. These polynomials are given in appendix A. We
note that earlier series work [5] gives the coefficients Ar to order 10 and Gr to order 7 only for
the case p = 2

3 (D = 0). Our extended results confirm these.
A few technical comments are in order. The free energy series was derived by the direct

method involving both connected and disconnected graphs with single and double bonds. For
p = 1 (D = ∞) the S = 0 states are suppressed and the series should reduce to the known
spin- 1

2 Ising series [9]. This provides a partial check on the correctness of our results. The
susceptibility series was obtained using the ‘vertex-renormalized linked-cluster’ method [10].
To obtain the susceptibility with respect to a uniform external field h we write the specific
fields as h A = m Ah and hB = m Bh where m A = 1

2 and m B = 1 are the relative magnetic
moments. In this case, the p = 1 limit is not exactly the known spin- 1

2 susceptibility series,
because of the different moments, but odd and even coefficients in the expansion of the mixed-
spin susceptibility are related to the corresponding coefficients in the spin- 1

2 case by factors of
2m A m B = 1 and m2

A + m2
B = 5

4 , respectively. This has provided an additional check on our
series. We have taken every care to avoid errors, but even with these checks the possibility of
small errors in the high-order coefficients cannot be excluded.

In section 3 of the paper, we will use the susceptibility series to obtain the locus of the
line of critical points of the model and use the free energy series to search for evidence of a
first-order transition, using ‘free energy matching’.

2.2. Low-temperature expansions

Expansions have been derived for the zero-field free energy and sublattice magnetizations,
MA = 1

2 〈σ 〉 and MB = 〈S〉, in powers of the variable u = exp(−2J/kBT ) = exp(−2K ). The
expansions take the form

−β f (u, βD) = 4β J + βD +
∞∑

r=2

ψr (y) ur (5)

2MA = 1 −
∞∑

r=4

μ[A]
r (y) ur (6)

MB = 1 −
∞∑

r=4

μ[B]
r (y) ur (7)

where y = exp(−βD). The quantities ψr (y), μ[A]
r (y) and μ[B]

r (y) are polynomials in y and
are given in appendix B to order r = 19. Thus the resulting series can be obtained to order u19

for any fixed value of βD.
These series were derived using the method of partial generating functions (PGF) [7, 11]

where each PGF corresponds to a fixed number of spin excitations on the A sublattice. Bowers
and Yousif [6] have shown that these can be obtained from the corresponding PGFs for the
pure spin- 1

2 problem. Using the published PGFs to F7 [11] and augmenting these with the
lower-order (in u) contributions to F8, F9 and F10 allows a ‘temperature grouping’ to order u19

to be computed. A check is available for the case y = 1 (D = 0) as discussed below. The
series will be used in section 3 to explore the region D/J � −3 where the most interesting
physics is expected.

An alternative, usually more powerful, method of obtaining low-temperature series
expansions, particularly in two dimensions, is the finite lattice method (FLM) [12]. We have
adapted this method to the mixed-spin problem and obtained series for Z (rather than for ln Z )
and the sublattice magnetizations for the case D = 0. The FLM combinatorics for treating
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Table 1. Estimates of critical temperature kTc/J for various D/J from analysis of high-
temperature susceptibility series. The values of Kc for χ and M are from high-temperature
susceptibility series and low-temperature magnetization series, respectively.

βD Kc (χ ) Kc (M) kTc/J D/J

0.940 0.4713(1) — 2.122(1) 1.944
0.488 0.4870(3) — 2.053(1) 1.002
0 0.5120(5) 0.5199 1.953(2) 0

−0.553 0.5535(10) — 1.807(3) −0.999
−0.765 0.5735(10) 0.5725 1.744(3) −1.334
−1.260 0.630(1) 0.6285 1.587(3) −2.000
−1.935 0.729(2) — 1.372(3) −2.654
−2.450 0.815(5) — 1.227(6) −3.006
−5.000 1.36(1) — 0.735(5) −3.67

sublattices is a slightly simplified case of that described for the checkerboard lattice [17]. The
series are given in appendix C. These data provide a check on the shorter general series for the
case y = 1.

It is possible to include the single-ion anisotropy in FLM calculations. However, issues
of numerical precision and storage requirements mean that this is most easily done for single-
variable series defined by y = un/m so that D/J = 2n/m where n = 4k − 2m and k and
m are small integers. We have derived series (of varying length) for a number of choices of
n/m. These series are valuable, in conjunction with the high-temperature susceptibility, in
locating the critical line. Magnetization series for D/J = 0,−4/3,−2 were used to obtain
estimates of the critical temperature, given in table 1. We have also calculated series for the
cases D/J = 4, 8, 16. However, it has not been possible to explore the region D/J � −3 in
this way.

3. Results

We now turn to the results obtained by analysis of the various series.

3.1. The critical line

As shown in the schematic phase diagram (figure 1(b)), the model will have a line of critical
points in the (T, D) plane. Critical temperatures are usually obtained most precisely from
analysis of the high-temperature susceptibility series. We choose fixed values of βD, obtain
the critical point Kc from a standard Padé approximant analysis [13] of both logarithmic
derivative series and the series for χ4/7 which should have a simple pole, and obtain the
corresponding values of D/J as βD/Kc. In table 1, we give estimates of kBT/J . The quoted
uncertainties are, as usual, confidence limits based on consistency and apparent convergence
among a range of approximants. The resulting critical curve is shown in figure 2. For
βD � −3.0 the susceptibility series becomes more and more irregular and the analysis more
problematic. This is due to the presence of interfering singularities and we are unable to
continue the line to D/J = −4 where Tc = 0. If the transition in this region becomes
first-order, as we argue below, the high-temperature susceptibility series will not in any case
diverge at the true transition temperature but at a spinodal line within the ordered phase. The
critical line obtained in the present study agrees well with earlier results from a transfer matrix
approach [2] and lies substantially below the mean-field curve [4] which is shown in figure 2
for comparison.
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Figure 2. Critical temperature of the mixed-spin model as function of anisotropy, estimated
from high-temperature series. The estimated errors are smaller than the plotting symbols. For
comparison, the mean-field result (MFA) [4] is also shown, with its predicted tricritical point (TCP).

3.2. First-order transitions

Mean-field theory [4] predicts the existence of a tricritical point at D/J = −3.720 and hence
a first-order transition in the range −4 < D/J < −3.72. While series expansions are not, in
general, well-suited to identifying first-order transitions, they have been used successfully in
the past in this context [14–16]. The idea is to compare free energies obtained from high- and
low-temperature series and see whether the curves join smoothly or with different slopes, the
latter being characteristic of a first-order transition.

We have carried out such an analysis for the present model and show, in figure 3, estimated
free energy curves for four cases: D/J = −2,−3,−3.2 and −3.6. In the first two cases the
curves appear to join smoothly and are virtually indistinguishable over ranges of K , (0.6, 0.67)
and (0.7, 0.9) that in each case encompass the estimated critical points: Kc ≈ 0.63 and
Kc ≈ 0.8. It is clearly not possible to estimate Kc with any accuracy in this way. In the other
cases, D/J = −3.2 and −3.6, there is a clear indication of first-order transitions at K ≈ 0.83
and K ≈ 1.3. If this conclusion is valid there will be a tricritical point around D/J = −3.1,
although it is difficult to locate it to high precision in this way. The D/J = −3.1 case
(not shown) shows ambiguous behaviour, indicating that much longer series, giving smaller
uncertainties in β f , would be needed to locate the tricritical point more precisely. The transfer
matrix and Monte Carlo studies [2] did not find a tricritical point in this model.

3.3. Compensation points

As mentioned previously, the mean-field study of this model [4], for the ferrimagnetic case
J < 0, predicts the existence of a compensation point in the ordered phase where the total
moment m = 1

2 〈σ 〉 + 〈S〉 vanishes. We have used the low-temperature series of section 2.2
to evaluate both sublattice magnetizations, MA = 1

2 〈σ 〉 and MB = 〈S〉, as functions of
T for various values of the anisotropy D/J . Typical results are shown in figure 4, for
D/J = −2.0,−3.6. Note that we consider the equivalent ferromagnetic system in which
the ferrimagnetic compensation point is signalled by MA = MB .

The magnetization of the A sublattice remains close to the saturation value until close to Tc

where it drops sharply. This behaviour follows that of the simple Ising model. The B sublattice
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(a)   D/J = -2.0 (b)   D/J = -3.0

(c)   D/J = -3.2 (d)   D/J = -3.6
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Figure 3. Matching of high-temperature, +, and low-temperature, ◦, series estimates of free
energies for (a) D/J = −2.0, (b) D/J = −3.0, (c) D/J = −3.2 and (d) D/J = −3.6. In
cases (a) and (b), the branches meet smoothly, whereas in cases (c) and (d), the transition appears
to be first order. Unless shown, the error bars are no larger than the plotting symbols in the figure.
Lines are guides for the eye. The vertical chain line in parts (a) and (b) indicates the critical point
estimated from high-temperature susceptibility series.

(a)    D/J = -2 (b)    D/J = -3.6

T/Tc
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Figure 4. Sublattice magnetizations MA • and MB ◦ as functions of temperature for (a) D/J =
−2.0 and (b) D/J = −3.6. No compensation point is seen in either case.
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magnetization, on the other hand, has a more complex temperature dependence and develops a
point of inflection for D/J approaching −4. Physically this is due to an increasing population
of the S = 0 state with increasing temperature and is the precursor to a compensation point
(where MB would fall below MA). However, we find no compensation point, down to at least
D/J = −3.9.

4. Conclusions

We have used high- and low-temperature series expansions to investigate a mixed-spin S =
( 1

2 , 1) Ising model with nearest neighbour interactions on the square lattice. A single-ion
anisotropy term is included in the S = 1 sublattice. Our main motivation has been to search for
the existence of a tricritical point and/or compensation point, both of which are predicted by
mean-field theory [4], but neither of which was found by a more reliable Monte Carlo/transfer
matrix study [2]. In the process we have substantially extended the series for this model.

Although we find no compensation point, the magnetization of the S = 1 sublattice shows
an anomalous temperature dependence for large negative anisotropy D, which if magnified
would lead to a compensation point. Rather surprisingly, we do find evidence for a first-
order transition at large negative D and hence for a tricritical point that is not seen in previous
work [2]. This suggests that further study of the model is warranted.

The previous study [2] found that inclusion of a next-nearest neighbour interaction between
the S = 1

2 spins did yield a compensation point. Such an interaction will stiffen the order on
the A sublattice to higher temperatures. We have not included such an interaction in our series
work although it could be done with some effort.

Series expansion methods have not, to our knowledge, been used previously in looking
for compensation points in ferrimagnetic models. However, as we demonstrate here, they can
potentially be a powerful approach. Provided that reasonably long magnetization series can
be derived, the resulting analysis can be quite precise, as the compensation point, unlike the
critical point, is not a singularity.
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Appendix A. High-temperature polynomials

Free energy equation (2)

A2(p) = p

A4(p) = (5/6)p

A6(p) = (17/45)p + p2 − (2/3)p3

A8(p) = (13/126)p + (7/4)p2 − (5/3)p3 + (3/2)p4

A10(p) = (257/14 175)p + (22/15)p2 − (29/45)p3 + 4p4 − (4/5)p5

A12(p) = (205/93 555)p + (1453/1890)p2 + (2153/1134)p3 + (28/5)p4 + (8/3)p5 + p6

A14(p) = (8194/42 567 525)p + (1406/4995)p2 + (9383/2835)p3 + (4635/567)p4

+ (254/15)p5 + 8p6 + (8/7)p7



10938 J Oitmaa and I G Enting

A16(p) = (3277/255 405 150)p + (15 949/207 900)p2 + (177 043/62 370)p3

+ (161 513/12 600)p4 + (12 449/315)p5 + (869/15)p6 + (14/3)p7

+ (45/4)p8.

Susceptibility equation (3)

G0(p) = (1/8)+ (1/2)p

G1(p) = 2p

G2(p) = (5/2)p + 5p2

G3(p) = (10/3)p + 14p2

G4(p) = (17/6)p + (86/3)p2 + 26p3

G5(p) = (34/15)p + 48p2 + 70p3

G6(p) = (13/9)p + (1075/18)p2 + (1205/6)p3 + 120p4

G7(p) = (52/63)p + (1064/15)p2 + (1114/3)p3 + 326p4

G8(p) = (257/630)p + (20 921/315)p2 + (6227/10)p3 + (2303/2)p4 + 540p5

G9(p) = (514/2835)p + (1648/27)p2 + (7900/9)p3 + (6928/3)p4 + 1434p5

G10(p) = (41/567)p + (262 741/5670)p2 + (412 487/378)p3 + (28 385/6)p4

+ (12 133/2)p5 + 2328p6

G11(p) = (164/6237)p + (18 232/525)p2 + (167 818/135)p3 + (112 784/15)p4

+ 12698p5 + 6164p6

G12(p) = (4097/467 775)p + (10 387 387/467 775)p2 + (35 464 649/28 350)p3

+ (64 646 307/5670)p4 + (91 642/3)p5 + 30346p6 + 9724p7

G13(p) = (16 388/6081 075)p + (62 608/4455)p2 + (96 868/81)p3

+ (74 990 194/4995)p4 + (788 602/15)p5 + (196 214/3)p6 + 25 730p7

G14(p) = (6554/8513 505)p + (66 025 327/8513 505)p2 + (235 394/231)p3

+ (498 094/27)p4 + (1953 221/21)p5 + (361 211/2)p6 + (288 405/2)p7

+ 40392p8

G15(p) = (26 216/127 702 575)p + (18 455 024/4343 625)p2 + (130 902 236/155 925)p3

+ (98 021 494/4725)p4 + (42 746 416/315)p5 + (14 770 084/45)p6

+ (956 302/3)p7 + 106 216p8

G16(p) = (65 537/1277 025 750)p + (1315 330 466/638 512 875)p2

+ (10 192 275 347/16 372 125)p3 + (160 684 229/7425)p4

+ (122 425 943/630)p5 + (138 933 001/210)p6 + (14 870 686/15)p7

+ 668 719p8 + 164 358p9.

Appendix B. Low-temperature polynomials

Free energy equation (5)

ψ2(y) = y

ψ4(y) = 2 − (1/2)y2

ψ5(y) = 4y

ψ6(y) = 4 − 5y + 6y2 + (1/3)y3
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ψ7(y) = 12y − 16y2 + 4y3

ψ8(y) = 9 − 6y + 25y2 − 24y3 + (3/4)y4

ψ9(y) = 16y − 4y2 + 52y3 − 16y4

ψ10(y) = 24 + 17y − 46y2 − 3y3 + 72y4 − (19/5)y5

ψ11(y) = 16y + 212y2 − 264y3 − 72y4 + 48y5

ψ12(y) = (224/3)+ 1000y − (763/2)y2 + 948y3 − 464y5 − 154y5 + (71/6)y6

ψ13(y) = 76y + 836y2 − 1928y3 + 2392y4 − 252y5 − 116y6

ψ14(y) = 260 + 323y − 752y2 + 3004y3 − 5732y4 + 3427y5 + 160y6 − (209/7)y7

ψ15(y) = 580y + 1468y2 − (5480/3)y3 + 7616y4 − 11828y5 + 2468y6 + 224y7

ψ16(y) = (1961/2)+ 942y + 1212y2 − 2886y3 + (4809/2)y4 + 18 492y5 − 15 559y6

+ 516y7 + (523/8)y8

ψ17(y) = 3432y + 376y2 + 21 256y3 − 42 268y4 + 13 860y5 + 37 908y6 − 11 584y7

− 288y8

ψ18(y) = (11 752/3)+ 3017y + 14 748y2 − (139 802/3)y3 + 144 610y4 − 168 599y5

+ 6404y6 + 50 961y7 − 3936y8 − (1115/8)y9

ψ19(y) = 17816 − 3608y + 115 104y2 − 312 228y4 + 560 704y5 − 374 836y6 − 49 432y7

+ 39 392y8 − 64y9.

Magnetization, sublattice A, equation (6)

μ4(y) = 2

μ5(y) = 8y

μ6(y) = 8 − 8y + 12y2

μ7(y) = 24y − 32y2 + 8y3

μ8(y) = 34 + 8y + 52y2 − 48y3 + 2y4

μ9(y) = 72y + 80y2 + 120y3 − 32y4

μ10(y) = 152 + 104y − 220y2 + 128y3 + 168y4 − 8y5

μ11(y) = 344y + 976y2 − 1216y3 − 96y4 + 112y5

μ12(y) = 714 + 584y − 868y2 + 4256y3 − 2034y4 − 376y5 + 28y6

μ13(y) = 2160y + 3808y2 − 6784y3 + 10 496y4 − 1176y5 − 304y6

μ14(y) = 3472 + 2704y + 1352y2 + 10 496y3 − 23 264y4 + 14 344y5 + 388y6 − 80y7

μ15(y) = 13 584y + 11 488y2 + 7344y3 + 23 424y4 − 50 264y5 + 9712y6 + 696y7

μ16(y) = 17 318 + 12 912y + 31 816y2 − 19 744y3 + 65 472y4 + 67 688y5 − 64 648y6

+ 1728y7 + 208y8

μ17(y) = 82 352y + 46 144y2 + 168 528y3 − 303 040y4 + 183 368y5 + 157 056y6

− 44 712y7 − 1248y8

μ18(y) = 88 048 + 65 264y + 240 152y2 − 147 536y3 + 947 296y4 − 1195 792y5

+ 178 708y6 + 211 528y7 − 12 304y8 − 496y9

μ19(y) = 487 376y + 279 808y2 + 887 744y3 − 1546 624y4 + 3639 400y5 − 2585 280y6

− 111 392y7 + 150 400y8 + 1632y9.
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Magnetization, sublattice B , equation (7)

μ2(y) = y

μ4(y) = 2 − y2

μ5(y) = 4y

μ6(y) = 8 − 7y + 12y2 + y3

μ7(y) = 36y − 32y2 + 12y3

μ8(y) = 34 − 30y + 76y2 − 72y3 + 3y4

μ9(y) = 120y − 72y2 + 164y3 − 64y4

μ10(y) = 152 + 9y + 96y2 − 59y3 + 288y4 − 19y5

μ11(y) = 440y + 504y2 − 544y3 − 288y4 + 240y5

μ12(y) = 714 + 352y − 753y2 + 2968y3 − 1704y4 − 762y5 + 71y6

μ13(y) = 2236y + 4200y2 − 7520y3 + 9504y4 − 1244y5 − 696y6

μ14(y) = 3472 + 2137y − 1860y2 + 18 976y3 − 25 832y4 + 16 999y5 + 968y6 − 209y7

μ15(y) = 13 372y + 16 648y2 − 21 544y3 + 51 352y4 − 60 812y5 + 14 656y6 + 1584y7

μ16(y) = 17 318 + 10 642y + 16 120y2 + 34 998y3 − 42 520y4 + 116 432y5 − 92 942y6

+ 3380y7 + 525y8

μ17(y) = 81 008y + 57 840y2 + 68 800y3 − 75 160y4 − 25 756y5 + 240 648y6 − 79 256y7

− 2440y8

μ18(y) = 88 048 + 53 589y2 + 196 720y3 − 69 610y3 + 646 812y4 − 656 865y5 − 64 256y6

+ 354 383y7 − 29 588y8 − 1133y9

μ19(y) = 482 160y + 255 376y2 + 830 536y3 − 1654 152y4 + 3036 568y5 − 1933 000y6

− 399 968y7 + 303 384y8 + 264y9.

Appendix C. Low-temperature series for D = 0

n � 2MA MB

0 1 1 1
1 0 0 0
2 1 0 −1
3 0 0 0
4 2 −2 −1
5 4 −8 −4
6 7 −12 −14
7 4 0 −16
8 12 −48 −11
9 56 −240 −148

10 85 −324 −467
11 16 −120 −352
12 237 −2 304 −886
13 1 092 −8 200 −6 480
14 1 182 −9 412 −14 651
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15 244 −15 984 −15 256
16 7 609 −112 750 −63 953
17 24 492 −288 448 −265 684
18 19 101 −374 868 −518 100
19 27 276 −1 203 064 −921 168
20 258 001 −5 143 744 −3 596 879
21 588 340 −11 007 624 −10 988 824
22 469 190 −19 887 956 −22 250 017
23 1 721 868 −71 512 496 −54 492 168
24 8 574 255 −229 434 686 −182 361 304
25 15 587 260 −480 799 472 −485 872 424
26 19 019 487 −1 140 201 068 −1 099 778 395
27 83 601 404 −3 818 148 664 −3 023 514 544
28 286 002 711 −10 527 536 172 −9 047 912 433
29 483 837 524 −23 681 519 160 −23 220 720 020
30 925 796 394 −64 186 652 348 −57 661 206 008
31 3 632 190 036 −196 074 568 848 −162 009 811 552
32 9 935 584 271 −509 205 503 488 −455 566 252 239
33 17 937 247 396 −1 246 489 237 712 −1 175 640 422 620
34 45 021 389 115 −3 516 154 661 676 −3 079 814 836 505
35 151 664 076 748 −10 051 390 214 824 −8 597 948 883 880
36 369 822 320 783 −25 898 036 403 930 −23 492 159 524 108
37 758 927 807 732 −67 327 724 690 144 −61 635 502 786 700
38 2 124 327 429 138 −189 819 956 999 488 −165 691 566 038 227
39 6 332 313 107 532 −522 844 994 692 928 −457 792 286 802 656
40 14 894 179 490 640 −1 365 016 493 223 132 −1 237 997 546 964 335
41 34 463 262 202 180 −3 666 750 501 726 048 −3 298 093 488 627 480
42 98 319 436 258 400 −10 219 254 050 898 392 −8 963 468 060 434 086
43 270 356 528 568 500 −27 702 002 405 327 056 −24 573 787 094 876 248
44 643 330 125 661 066 −73 539 477 884 922 270 −66 362 713 706 273 013
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